Information

Can scientists name themselves in the scientific name when they discover a new taxon?

Can scientists name themselves in the scientific name when they discover a new taxon?



We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

There are sometimes people names in taxonomy, like Myotis keenii was names after Mr. Keen who contributed to discover the species. So, if you discover a species and someone else is constructing the scientific name and names you, it's clear. But when you discover a species and you publish it in a paper, can you propose a scientific name that contains your name? Has it ever happened, or is it considered an unhealthy practice?


The answer is that in general, self-naming is severely frowned upon in the scientific community, but the act itself is not disallowed.

There have been at least two instances of self-naming recorded in literature, as stated in John Wright's book The Naming of the Shrew, page 34, where Jules Bourguignat named a species of snail after himself as Ferussacia bourguignatiana. The naming was apparently very poorly received (being referred to as taxonomic onanism), although I was unable to confirm this by locating the original citation.

Another example was given in the book on Sigismund Hochenwarth who named a species of moth (now Syngrapha hochenwarthi) after himself (original citation here).


16.1: Organizing Life on Earth

  • Contributed by OpenStax
  • Concepts of Biology at OpenStax CNX

All life on Earth evolved from a common ancestor. Biologists map how organisms are related by constructing phylogenetic trees. In other words, a &ldquotree of life&rdquo can be constructed to illustrate when different organisms evolved and to show the relationships among different organisms, as shown in Figure 12.1.1. Notice that from a single point, the three domains of Archaea, Bacteria, and Eukarya diverge and then branch repeatedly. The small branch that plants and animals (including humans) occupy in this diagram shows how recently these groups had their origin compared with other groups.

Figure 12.1.1: In the evolution of life on Earth, the three domains of life&mdashArchaea, Bacteria, and Eukarya&mdashbranch from a single point. (credit: modification of work by Eric Gaba)

The phylogenetic tree in Figure 12.1.1 illustrates the pathway of evolutionary history. The pathway can be traced from the origin of life to any individual species by navigating through the evolutionary branches between the two points. Also, by starting with a single species and tracing backward to any branch point, the organisms related to it by various degrees of closeness can be identified.

A phylogeny is the evolutionary history and the relationships among a species or group of species. The study of organisms with the purpose of deriving their relationships is called systematics.

Many disciplines within the study of biology contribute to understanding how past and present life evolved over time, and together they contribute to building, updating, and maintaining the &ldquotree of life.&rdquo Information gathered may include data collected from fossils, from studying morphology, from the structure of body parts, or from molecular structure, such as the sequence of amino acids in proteins or DNA nucleotides. By considering the trees generated by different sets of data scientists can put together the phylogeny of a species.

Scientists continue to discover new species of life on Earth as well as new character information, thus trees change as new data arrive.


Taxonomy echoes evolution

Inherent in that usefulness is the way taxonomy groups organisms according to their relationships. In modern taxonomy, that means describing evolutionary links. A taxonomic group must always refer to a set of organisms that descended from the same ancestor, at some point in evolutionary history. Species within the same genus all share a common ancestor. The same goes for each genus within one family and so on.

Taxonomy is so intertwined with evolutionary theory, in fact, that it can be difficult to delineate when a researcher's "doing taxonomy" and when they're "doing evolutionary biology," Baum said.

Classically, a taxonomist engages in taxonomy by examining the various features of an organism or group of organisms, comparing them against known examples, and then, if warranted, reassigning names or assigning new ones. A taxonomist might take a set of specimens and separate potentially different species, as the UN Environment Programme's Secretariat of the Convention on Biological Diversity describes.

The investigator would then check whether these groups already had names, sometimes by reading centuries-old specimen descriptions, or comparing against samples from museums and herbaria. They'd look at external and internal traits and maybe even analyze DNA. Should those comparisons show no matches, the taxonomist would write up a description and assign a new species name in accordance with the complicated rules of taxonomic nomenclature. Then, the finding would be published.

That work can involve a bit of evolutionary discovery, beyond just naming. In practice, taxonomists are doing evolutionary biology, Baum said. "They're reconstructing evolutionary history. And so all the time they're discovering new evolutionary relationships among organisms."

The field's interdependence with evolutionary theory also means that taxonomy in turn must respond to evolutionary discoveries. So, groupings and names can change, sometimes dramatically.

Reptiles, for example, originally encompassed lizards, snakes, turtles and crocodiles. Birds were considered distinct. Over time, however, scientists found that crocodiles were more closely related to birds than either of them were to other reptiles. (This was found first via morphological studies but later well-confirmed via molecular analysis, Baum said.) This left taxonomists in a quandary about what the grouping "reptile" should refer to, as one of its core members was now seen to be more closely related to an outsider, Baum said.

"If the taxonomy doesn't reflect evolutionary history properly, and people assume that it does, then they tend to make mistakes . "

- botanist David Baum

Taxonomists could have reserved the term "reptile" for referring to the noncrocodile members (snakes, lizards and turtles), as crocodiles were more closely related to birds. Instead, scientists expanded reptiles to now include birds.

Expanding even further, scientists eventually accepted that one group of dinosaurs, the theropods, are more closely related to birds than to any other reptiles. (Evidence for this built over the years, beginning with the bird-like Archaeopteryx in the 1860s and continuing through the discovery of many feathered dinosaurs in the 1990s.)

Again, taxonomists could have restricted the term "dinosaurs" to those dinos from which birds didn't descend. But researchers instead opted to maintain the grouping of all previously recognized dinosaurs, as Dinosauria, while acknowledging birds as the descendants of one dino branch.

By responding to evolutionary findings like this, taxonomy does more than change nomenclature: It helps scientists avoid errors, Baum said. "If birds had been kept taxonomically separate from crocodiles, biologists would tend to make assumptions that crocodilian anatomy and physiology would resemble that of lizards, instead of looking to the birds," he said. "If the taxonomy doesn't reflect evolutionary history properly, and people assume that it does, then they tend to make mistakes in inference. They tend to jump to false conclusions."


Pop scientists name beetle after The Beatles

Do you want to know a secret? There’s a beetle in the Vondelpark that is named after The Beatles.

Ptomaphagus thebeatles, a bottom-dweller just 2mm long, has now found his place in the limelight thanks to Dutch scientists and citizen researchers with a sense of humour.

They needed very little help in coming up with a name when they discovered the tiny beastie, according to a press release, because he was found near the Hilton Hotel where 51 years ago John Lennon and Yoko Ono attracted the attention of the world by doing a ‘bed in for peace.’

‘Insects are often named after famous musicians,’ said Amsterdam’s Vrije Universiteit, where one of the biologists Joris Koene works. ‘A treehopper has been named after Lady Gaga, a fly after Beyoncé and four types of damselfly have been named after all Queen band members. Strangely, a beetle has never been named after the Beatles. This has now been rectified in a new publication in the scientific journal, Contributions to Zoology.’

The day tripper expedition series, where normal members of the public join scientists to help improve our understanding of the natural world, is organised by Taxon Expeditions and the Naturalis Biodiversity Centre. Last year one of its outings led to the identification of a new parasitic wasp, named the Aphaereta vondelparkensis.

Biologist Iva Njunjić, co-founder of Taxon Expeditions, said that there are specimens of this beetle in various collections, from countrias such as Bulgaria and the Czech Republic, but that it had never previously be named.

‘It’s really cute,’ said Njunjić, who is an expert on cave beetles. ‘It lives in leaf litter, feeds on fungi and is a brown reddish colour. We just found one so it could even be a bit rare in the Vondelpark. We just thought “thebeatles” was kind of a cool name.’

The organisation normally organises expeditions to remote areas for people who want to study science and biology and help discover new species, but has been working more locally during the coronavirus. Its next magical mystery tour is set to be to Borneo in September, travel regulations allowing.

And if Njunjić were asked to think of a Beatles song for the newly-named beetle? ‘”Let it be” is a good one,’ she said.


How to name an organism: the nomenclature codes

Taxonomy and nomenclature are two different but inseparable concepts. While taxonomy is the science of describing and classifying organisms, nomenclature is the tool that allows taxonomists to assign names to those organisms.

In 1758, Linné stated the basis for an objective classification of species in the 10th edition of one of his most famous publications, Sistema Naturae :

  • Each species must have an own scientific name, unique and universal.
  • When a species is given more than one name by different scientists, the oldest one must prevail.
  • Scientific names are composed by two Latin or Greek terms: the first one corresponds to the genus and the second one, to the species belonging this genus.
  • The first letter of the genus must be written in upper case, while the specific epithet or names must be written in lower case. Moreover, both terms must be written in italic or underlined.

Nomenclature has been getting more and more complex over the years. Nowadays, there are international codes of nomenclature for every group of organisms, like the ICZN (International Code of Zoological Nomenclature) or the ICN (International Code of Nomenclature for algae, fungi, and plants) , amongst others. Taxonomist from each branch must obey their own codes when naming an organism.

Two of the most important rules when giving a name are the validity and the availability of the name. Let’s imagine we discover a new species of wasp of the genus Polistes: in one hand, the name (Polistes x) must be available , that is, it must accomplish the needed requirements to be assigned to our species. These requirements are gathered in the international codes, which are based on the Linné’s criteria. Moreover, a name is available when it is accompanied by a formal (published) description . Availability of a name can change under certain circumstances e.g., a name considered unavailable can be available again if is republished following the code’s criteria.

In the other hand, a name must be valid , that is, it must have not been used to designate another organism, or considered invalid . For example, two taxonomists one before the other describe the same species and give it different names in this case, the valid name would be the oldest one, so the second one would become a junior synonym according to the priority principle, thus getting invalid for its use.


What is used to determine phylogeny?

What do scientists in the field of systematics accomplish?

  1. discover new fossil sites
  2. organize and classify organisms
  3. name new species
  4. communicate among field biologists

Which statement about the taxonomic classification system is correct?

  1. There are more domains than kingdoms.
  2. Kingdoms are the top category of classification.
  3. Classes are divisions of orders.
  4. Subspecies are the most specific category of classification.

On a phylogenetic tree, which term refers to lineages that diverged from the same place?


Scientists find new giant dinosaur

Volgatitan simbirskiensis anterior caudal vertebra (holotype), in right lateral (A), anterior (B), left lateral (C), posterior (D), dorsal (E), and ventral (F) views photographs. Credit: Alexander Averianov and Vladimir Efimov

Paleontologists from Russia have described a new dinosaur, the Volgatitan. Seven of its fossilized vertebrae, buried in the ground for about 130 million years, were found on the banks of the Volga, not far from the village of Slantsevy Rudnik, five kilometers from Ulyanovsk. The study has been published in the latest issue of Biological Communications.

The Volgatitan belongs to the group of sauropods—giant herbivorous dinosaurs with a long necks and tails, which lived about 200 to 65 million years ago. Weighing around 17 tons, the ancient reptile from the banks of the Volga was not the largest among its relatives. The scientists described it from seven caudal vertebrae. The bones belonged to an adult dinosaur characterized by neural arches (parts of the vertebrae protecting the nerves and blood vessels), which completely merged with the bodies of the vertebrae.

The remains of the dinosaur were discovered near the village of Slantsevy Rudnik. This is where, in 1982, Vladimir Efimov discovered three large vertebrae that had fallen out of a high cliff. Later, in 1984-1987, three nodules of limestone fell off, which contained the remaining vertebrae. In his works, the head of the Undorovsky Paleontology Museum called the unusual finds "giant vertebrae of unknown taxonomic affiliation."

Alexander Averianov said, "In the early 1990s, Vladimir Efimov showed photographs of the bones to Lev Nesov, a well-known Leningrad paleontologist. Lev Nesov thought that the vertebrae belonged to sauropods, giant herbivorous dinosaurs. In 1997, Vladimir Efimov published a preliminary note about this find in the Paleontological Journal. He referred to the vertebrae as a sauropod of the Brachiosauridae family. Last July, I finally managed to visit him in Undory and study the bones, and also managed to determine that they belonged to the new taxon of titanosaurs."

The dinosaur received a scientific name—Volgatitan simbirskiensis. It comes from the Volga River and the city of Simbirsk (currently, Ulyanovsk). Titans are ancient Greek gods known for their large size. Therefore, according to a paleontological tradition, this word is used in many scientific names of sauropods from the group of titanosaurs. It is also part of the name of the group.

Today, along with the Volgatitan from Russia, 12 valid dinosaur taxa have been described. There are only three sauropods among them: Tengrisaurus starkovi, Sibirotitan astrosacralis and Volgatitan simbirskiensis. The first two are the first sauropods in Russia, which were also studied by St. Petersburg University scientists in 2017. According to Aleksandr Averianov, the description of dinosaur taxa in recent years has become possible due to progress in understanding the anatomy and phylogeny of dinosaurs. In addition, the Russian sauropod allowed scientists to learn more about how these species of ancient reptiles had lived and developed.

"Previously, it was believed that the evolution of titanosaurs took place mainly in South America, with some taxa moving into North America, Europe and Asia only in the Late Cretaceous," explained the St. Petersburg University professor. In Asia, representatives of a broader group of titanosauriform, such as the recently described Siberian titanium, dominated in the early Cretaceous. However, the recent description of the Tengrisaurus from the Early Cretaceous of Transbaikal Region and the finding of the Volgatitan indicate that titanosaurs in the Early Cretaceous were distributed much more widely and, perhaps, important stages of their evolution took place in Eastern Europe and Asia."


Scientists Discover Bioluminescent 'Green Bombers' From The Deep Sea

In the latest proof that the oceans continue to offer remarkable findings and much of their vastness remains to be explored, scientists at Scripps Institution of Oceanography at UC San Diego and their colleagues have discovered a unique group of worms that live in the depths of the ocean.

The discoveries feature worms&mdashnicknamed "green bombers"&mdashthat can release body parts that produce a brilliant green bioluminescent display.

The discovery is described in the August 21 issue of the journal Science and is led by Karen Osborn of Scripps Oceanography.

The researchers introduce seven previously unknown species of swimming worms in the annelid phylum ranging from 18 to 93 millimeters (.7 to 3.6 inches) in length. They were discovered by the scientists using remotely operated vehicles at depths between 1,800 and 3,700 meters (5,900 and 12,140 feet). The first species described in the paper has been given the scientific name Swima bombiviridis, referring to its swimming ability and the green bombs.

Osborn says one key aspect of the discoveries is that the newly found worms are not rare. Opportunities to witness such animals and collect and study them, however, have been extremely rare.

"We found a whole new group of fairly large, extraordinary animals that we never knew anything about before," said Osborn, a post-doctoral researcher in the Marine Biology Research Division at Scripps. "These are not rare animals. Often when we see them they number in the hundreds. What's unique is that their habitat is really hard to sample."

Largely transparent except for the gut area, the worms propel themselves with fans of long bristles that form swimming paddles.

"The depths between 1,000 and 4,000 meters (3,280 and 13,120 feet) form the biggest habitat on Earth and also the least explored," said Scripps Professor Greg Rouse, a coauthor of the paper and curator of Scripps Benthic Invertebrate Collection. "With fairly limited time on submersible vehicles, mainly off California, we've picked up seven new species. It goes to show that we have much more exploration ahead and who knows what else we'll discover?"

Each of the species features a variety of elaborate head appendages. Five of them are equipped with luminescent structures, the "bombs," that are fluid-filled spheres that suddenly burst into light when released by the animal, glowing intensely for several seconds before slowly fading.

Due to the bright lights of the submersible, scientists were not able to witness bomb-casting in the worm's natural habitat, but rather on ships after the animals were captured. While the scientists speculate that the bombs are used as a defensive mechanism against potential predators, more studies are needed to fully understand the process.

Rouse says the green bombers in the newly discovered clade, (a common ancestor and all its descendant organisms), are fascinating from an evolutionary standpoint. Looking closely at their relatives that live on the seafloor, it appears the bombs were once gills that evolutionarily transformed over time.

"The relatives have gills that appear to be in exactly the same places as the bombs," said Rouse. "The gills can fall off very easily so there's a similarity of being detachable, but for some reason the gills have transformed to become these glowing little detachable spheres."

Osborn continues to probe many of the various adaptations the worms have made since evolving into swimming species. The challenges faced by animals living in a three-dimensional open water habitat above the seafloor are very different than those faced by animals living on the seafloor. These include locating new food sources, finding ways to maintain optimal depth and grappling with predators that come from various directions.

"I'm interested in how animals have evolved in the water column," said Osborn. "These worms are great examples. How does a worm transform into a wonderful glowing animal?"

In addition to Osborn and Rouse, coauthors of the Science paper include Steven Haddock of the Monterey Bay Aquarium Research Institute, Fredrik Pleijel of the University of Göteborg in Sweden and Laurence Madin of the Woods Hole Oceanographic Institution (WHOI).

The research was supported by Scripps Institution of Oceanography, a University of California President's Postdoctoral Fellowship, the David and Lucile Packard Foundation, NOAA, WHOI and the National Geographic Society.

Story Source:

Materials provided by University of California - San Diego. Note: Content may be edited for style and length.


Concept

First of all, we need to understand what taxonomy is.

Taxonomy is the biological discipline that defines groups of biological organisms based on common characteristics and names these groups.

Now, let’s go to the taxonomical classification:

The term scientific classification, taxonomy or biological classification, designates the way in which biologists group and categorize the species of living beings, extinct and current. The modern scientific classification has its roots in the Karl von Linnée (or Carolus Linnaeus) system, which grouped the species according to the morphological characteristics they share.

These groupings were subsequently changed multiple times to improve the consistency between the classification and the Darwinian principle of common ancestry.

The advent of molecular systematics, which uses genome analysis and molecular biology methods, has led to profound revisions to the classification of multiple species and taxonomic changes are likely to continue to occur as we move towards a classification system based on genetic and molecular similarity to the detriment of morphological criteria.

The scientific classification belongs to the science of taxonomy or biological systematics.

It’s too much difficult? Let’s simplify.

The taxonomic classification is nothing more than the classification of a living being.

Let's suppose: John is the son of Matthew and Ann. He is 11 years old, and lives in Seattle. This is John, and so it is with animals. This brings out his characteristics, and makes him unique.

The difference is that in the taxonomic classification, we have a common characteristic, and this one is being specified, which really shows that John is unique.

We can take the same example. John likes to study. John likes to study History. John likes to study the History of Ancient Persians.

See? The enjoyment of studying is common, but from there, this is specific, to the extent that we discover that John likes to study the Persian people. The taxonomic classification is like this! Easy, no?


12.1 Organizing Life on Earth

All life on Earth evolved from a common ancestor. Biologists map how organisms are related by constructing phylogenetic trees. In other words, a “tree of life” can be constructed to illustrate when different organisms evolved and to show the relationships among different organisms, as shown in Figure 12.2. Notice that from a single point, the three domains of Archaea, Bacteria, and Eukarya diverge and then branch repeatedly. The small branch that plants and animals (including humans) occupy in this diagram shows how recently these groups had their origin compared with other groups.

The phylogenetic tree in Figure 12.2 illustrates the pathway of evolutionary history. The pathway can be traced from the origin of life to any individual species by navigating through the evolutionary branches between the two points. Also, by starting with a single species and tracing backward to any branch point, the organisms related to it by various degrees of closeness can be identified.

A phylogeny is the evolutionary history and the relationships among a species or group of species. The study of organisms with the purpose of deriving their relationships is called systematics .

Many disciplines within the study of biology contribute to understanding how past and present life evolved over time, and together they contribute to building, updating, and maintaining the “tree of life.” Information gathered may include data collected from fossils, from studying morphology, from the structure of body parts, or from molecular structure, such as the sequence of amino acids in proteins or DNA nucleotides. By considering the trees generated by different sets of data scientists can put together the phylogeny of a species.

Scientists continue to discover new species of life on Earth as well as new character information, thus trees change as new data arrive.

The Levels of Classification

Taxonomy (which literally means “arrangement law”) is the science of naming and grouping species to construct an internationally shared classification system. The taxonomic classification system (also called the Linnaean system after its inventor, Carl Linnaeus, a Swedish naturalist) uses a hierarchical model. A hierarchical system has levels and each group at one of the levels includes groups at the next lowest level, so that at the lowest level each member belongs to a series of nested groups. An analogy is the nested series of directories on the main disk drive of a computer. For example, in the most inclusive grouping, scientists divide organisms into three domains : Bacteria, Archaea, and Eukarya. Within each domain is a second level called a kingdom . Each domain contains several kingdoms. Within kingdoms, the subsequent categories of increasing specificity are: phylum , class , order , family , genus , and species .

As an example, the classification levels for the domestic dog are shown in Figure 12.3. The group at each level is called a taxon (plural: taxa). In other words, for the dog, Carnivora is the taxon at the order level, Canidae is the taxon at the family level, and so forth. Organisms also have a common name that people typically use, such as domestic dog, or wolf. Each taxon name is capitalized except for species, and the genus and species names are italicized. Scientists refer to an organism by its genus and species names together, commonly called a scientific name, or Latin name. This two-name system is called binomial nomenclature . The scientific name of the wolf is therefore Canis lupus. Recent study of the DNA of domestic dogs and wolves suggest that the domestic dog is a subspecies of the wolf, not its own species, thus it is given an extra name to indicate its subspecies status, Canis lupus familiaris.

Figure 12.3 also shows how taxonomic levels move toward specificity. Notice how within the domain we find the dog grouped with the widest diversity of organisms. These include plants and other organisms not pictured, such as fungi and protists. At each sublevel, the organisms become more similar because they are more closely related. Before Darwin’s theory of evolution was developed, naturalists sometimes classified organisms using arbitrary similarities, but since the theory of evolution was proposed in the 19 th century, biologists work to make the classification system reflect evolutionary relationships. This means that all of the members of a taxon should have a common ancestor and be more closely related to each other than to members of other taxa.

Recent genetic analysis and other advancements have found that some earlier taxonomic classifications do not reflect actual evolutionary relationships, and therefore, changes and updates must be made as new discoveries take place. One dramatic and recent example was the breaking apart of prokaryotic species, which until the 1970s were all classified as bacteria. Their division into Archaea and Bacteria came about after the recognition that their large genetic differences warranted their separation into two of three fundamental branches of life.

Visual Connection

In what levels are cats and dogs considered to be part of the same group?


Watch the video: VA Rejects CRT, MN Rejects Replacing Police, u0026 Mandates Everywhere Will u0026 Amala LIVE (August 2022).